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The shape and forces of axisymmetric menisci have been calculated for sessile drops, pendant drops
and liquid bridge profiles. The tables of Bashforth & Adams have been extended into the liquid bridge
region by generating profiles beyond the 180° angle of their study, and into regions covered by a much
wider range of shape factor.

Numerical integration of the Laplace equation was performed by using a first-order method originally
proposed by Lord Kelvin but adapted and modified for use with high-speed computers.

Tables have also been generated, by the same techniques, of profiles of a wide range of asixymmetric
menisci that do not cross the axis of symmetry. Such tables include the shape of a meniscus formed by a
rod at a free liquid surface. This second group of tables greatly extended the region over which liquid
bridge shapes could be obtained.

Closed menisci of the type of Bashforth & Adams’s tables are defined by one shape factor £, but open
menisci require two parameters to identify their shape. The general properties of these shape factors are
discussed.

The volume of any part of the meniscus bounded by two horizontal planes has also been derived and
its relationship to the forces acting between the planes is given.

The tables (400 pages)T are not reproduced here but the main features of these profile shapes are
summarized and discussed with the aid of graphs.
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266 J.F.PADDAY

1. INTRODUCGTION

The pressure difference, Ap, across an interface separating two immiscible fluid phases is given by
the well-known Laplace equation (Laplace 1805)

Ap = y(1/Rv+1/Rn), (1)

where v is the interfacial tension and Ry and Ry, are the principal radii of curvature in the vertical
and horizontal planes respectively. Plateau (1873) showed that the mass of material forming the
membrane of a soap film was so small that the sum of the curvatures possessed some constant

2

g 1
N
0
X/Ry
Ficure 1. Profiles of axisymmetric soap films.
R,/R, (max) R,/R, (min) shape
. 0.5 —0.5 nodoid
(@) 0.9 —0.9 nodoid
X 1.0 — circle
X — -1.0 catenoid
%] 1.1 —1.1 unduloid
® 2.0 —-2.0 unduloid

value independent of vertical height. The shapes of these soap films are extensively reviewed by
Bakker (1928) and have been used by other workers to give approximate shapes of profiles
of liquid interfaces even when gravitational forces cannot be neglected (Melrose 1966).
Profiles of Plateau’s soap films may be obtained by integrating equation (1) by using elliptic
integrals of the first and second kind (Princen 1969).
Equation (1) may be expressed in dimensionless form as
(Ro Ro) _ AR,

E+Fh oy’ (2)

where the constant multiplier, R;, may be any constant linear dimension. In figure 1, solutions of

this equation obtained by integration are plotted with R, taken as the maximum value of Ry(max)
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or the minimum value Rn(min). Thus at the starting-point the curve shape is characterized
completely by the ratio Ry(max)/Rn(max) or by Ry(min)/Ry(min). In figure 1 X and Z are the
horizontal and vertical coordinates respectively, reduced to dimensionless values by dividing by
the common multiplier of equation (2). The shape of all soap film profiles that cross the axis of
symmetry must be circular and all profiles that do not cross the axis of symmetry must be bounded
by two surfaces each of which cut the axis of symmetry and the soap film. The shape of soap films
supported between two planes depends on the pressure difference Ap, the surface tension force
(equal to 2y because there are two liquid vapour surfaces in a soap film) and the scale Rn(max)
which in turn determines the ratio Ry/Rn(max) and which determines the type of profile: nodoid,
unduloid or catenoid.

The pressure, Ap, across the surface of a meniscus separating two immiscible fluids of unequal
density varies with the vertical height Z to give

(ztm) = 5 2420, ®)

where p is the relative density between the two phases, g is the gravitational acceleration and Z,
the hydrostatic height of some fixed point on the meniscus from the free flat surface of the liquid/
vapour interface. In dimensionless form equation (3) becomes

Ry By ~@<Z Zg)
(Rv+Rh) oy \Ry R/’ )
peRYZ,
h =20 = 2, 5
where v R, (5)

Bashforth & Adams (1883) made R = b, the radius of curvature at an origin where the profile
crossed the axis of symmetry, so that Ry = Rn = b at this origin. By expressing the hydrostatic
height in a similar dimensionless form they produced the well-known equation

b b pZ
E+E =+ 2, (6)
where = pgh?[y. (7)

Equations (3), (4) and (6) are essentially the same second-order differential equations which,
as is well known, may not be solved in closed form (Buff 1960).

Early attempts to solve equation (3) are reviewed in Bakker (1928). Among these Verschaffelt
(1918) produced several solutions of the equation for profiles which under certain conditions
allowed some terms to be simplified or dropped out altogether. Lord Kelvin (1886) produced a
number of profiles of sessile drops and pendant drops using a geometrical construction method.
This method has been used more recently (Cross & Picknett 1963) and is essentially a first-order
graphical integration method applied to a second-order equation. Bashforth & Adams (1883)
integrated equation (6), using hand-calculated coefficients of Taylor series and obtained tables
of X/b and Z/b for values of § from 0.1 to 100 for sessile drops, and from — 0.1 to —4.0 for some
pendant drop profiles. In the pendant-drop calculations they assigned negative values to S.
Bashforth & Adams’s tables have been extended slightly by Blaisdell (1940) and Staicopolus
(1962, 1963, 1967) for sessile-drop conditions and by others (Andreas, Hauser & Tucker 1938;
Fordham 1948; Niederhauser & Bartell 1950; Mills 1953; Stauffer 1965) for pendant-drop condi-
tions. All these tables are collected together in one volume (Padday 1969).

23-2
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268 J.F.PADDAY

All published tables of meniscus profiles are limited to ¢ = 0-180° for sessile-drop conditions,
and to less than one cycle for pendant-drop conditions: ¢ is the angle between Ry and the axis of
symmetry as shown in figure 2. Thus no tables exist for liquid bridges formed by axially
symmetric menisci of liquid held between two parallel horizontal planes by two regular solid
surfaces. Also the range of the shape factor 4 covered by existing tables does not extend to large
enough values to be useful with problems involving large diameters. Furthermore, the shapes of
menisci that do not cross the axis of symmetry, such as describe the profiles obtained with the
Du Nouy ring or with a vertical rod at a free liquid surface do not appear to have been published,
in comprehensive tabular form, though they have been investigated by Huh & Scriven (1968).

In recent years many attempts have been made to compute the profiles of menisci not covered
by existing tables, by restricting conditions so that the mathematics may be simplified. Macfarlane
& Tabor (1950) and Pietsch & Rumpf (1967) have assumed that the profile of a liquid bridge
between a sphere and a plate and between two spheres are approximately circular when the
amount of liquid forming the bridge is small. Ku, Ramsey & Clinton (1968) omit Ry altogether to
obtain a closed form solution of equation (3) and Derjaguin (1946) uses boundary conditions to
obtain a solution. Nodoid approximations of Plateau have been used (Radushkevich 1952; Clark,
Haynes & Mason 1968; Fisher 1926), but in exact form for the case of two liquids of equal density
by Mason & Clark (1965). Nutt (1960) obtains solutions of the rod-in-free-surface meniscus by
using boundary conditions where one of the principal radii of curvature was omitted from the
solution.

Profiles obtained with a rod-in-a-free-surface of liquid (exact within the limits of computation
‘error) are given in the form of graphs by White & Tallmadge (1965) and both as graphs and tables
by Huh & Scriven (1969), but neither set of results is suitable for liquid bridge profiles between
two solid surfaces. The only published profiles of successive cycles of a gravity distorted nodoid
showing the shape of liquid bridges appears to be those of Lord Kelvin produced by a graphical
construction method. These, unfortunately, are too few in number and too inaccurate to be of
use.

In this study tables of nodoids and unduloids distorted by gravity have been computed to
cover the cases of sessile drops, pendant drops and their associated liquid bridges and also the
liquid bridge conditions derived from meniscus profiles that do not cross the axis of symmetry
and the associated rod-in-free-surface profiles.

2. THE GENERATION OF AXISYMMETRIC SURFACE PROFILES AND THEIR VOLUMES
Integration method
Equation (3) may be written in differential form as

d2z/dx? dz/dx
A (dz]dn) Bt T #{1+ (dzjdx) 5t

=%g(z+zo). (8)

As integration of equation (4) or (8) cannot be performed analytically the problem becomes
one of predicting values of the term d2z/dx? in equation (8), or its related variable R, so that
a step-by-step integration process may be attempted. In this treatment the values dx and dz were
derived on the basis that R, did not change significantly when small enough steps were taken so
that the real change in R, could be derived directly from either equation without a knowledge of
d?z/dx2.
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The quantities ¢, Z, X, R, and R, and their dimensionless counterparts form the variable terms
which govern the shape of a profile, and the method by which they are defined is given in figure 2.
In this figure the definitions are assigned according to the type of profile: sessile drop, pendant
drop and liquid bridge. Starting with some self-consistent and easily identified values of ¢, X, Z,
R, and R, the rest of the profile was generated with the aid of high-speed computers to perform
the step-by-step numerical integration procedure outlined above.

P
Ry$¢
dz Zh
O / dx P’

@)
Z
d+8 ¢ —
¥
B
©

Ficure 2. Construction method for axially symmetric menisci. (A) Sessile drop, free liquid surface is above O.
(B) Pendant drop, free liquid surface is above 0. (C) Liquid bridge, free liquid surface is usually below O.

The procedure adopted here is best described mathematically by the following steps:
(i) Designate a self-consistent set of starting values of the terms Ry, Rv/R,, Ru/R,, pgR3|y,
Z[R,, Zy|R,, ¢ and X|R, according to equation (4) and also consistent with

X|R,
Ry/R, = s—i-r/;?g’ when X/R, > 0. (9)
(i1) Assign a small value to the increment 8¢ and calculate increment 8X/R, using
B3X|R, = (Ry|R,) 5(sin ¢); (10)
then add 8X/R, to X/R,.
(iii) Calculate 8Z/R, according to
8Z|Ry = (— Ry[R,) 8(cos $); (11)
then add 8Z/R, to Z/R,.

(iv) With the new values of (X+8X)/R, and ¢+ 8¢ a new value Ru/R, is calculated from
equation (9).
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(v) With the new values of Rn/R, and (Z + 8Z) /R, a new value of Ry/R, is calculated according
to equation (4), using the predetermined value of pgR3/v. For the condition R, = 4 equations (6)
and (7) are more suitable to calculate the new value of Ry/R, but for other conditions equation (4)
is used, with R, defined as Rn(270°) and the associated shape factor £’ given by

B’ = pgRn(270°)%]y. (12)

(vi) The new value of Ry/R,, at (¢ + 8¢)) is compared with the old value Ry/R, at (¢) for a change

in sign. Such change indicates an inflexion point such as is found with pendant drops and when

it occurs further calculations must be continued by changing the sign of 8¢ so that at the next step
the gradient of the profile reaches a maximum or minimum value.

TABLE 1. STARTING VALUES FOR PROFILE SHAPE CALCULATIONS

closed meniscus tables

parameter (Bashforth & Adams’s tables) open meniscus tables
sessile drop, pendant drop,
distorted distorted distorted distorted
nodoid unduloid nodoid unduloid
] 0° 180° 270° 90°
8¢ +0.02° —0.02° +0.02° +0.02°
base measurement R, b b R, (270°) R, (270°)
X/R, 1.0 1.0 1.0 1.0
Z[R, 0 0 0 0
AN ~ )
R, R
Zy/R, 2/p 2/p B (% + 5
Rv Rh
to be assigned
RJR, 1.0 1.0 {<~1 -
R./R, 1.0 1.0 ~1.0 ~1.0
AN v — — v —
b2 R, (270°)2
shape factor to be assigned g = re B = 85‘2(_20_)_

Y Y

The procedure above enables successive values of X/Ry, Z/R,, Ry/R, and Ry/R, to be derived for
any integer multiple of 8¢. Two sets of tables have been compiled by this method. The first set
follows the method of Bashforth & Adams whereby the base measurement, R,, is designated as b,
the radius of curvature at the point where the meniscus crosses the line of symmetry. The second
set represents the profiles of menisci that do not cross the axis of symmetry and have generally
been classed as liquid bridge menisci. The starting conditions for both sets of tables are given in
table 1.

The computations were carried out on an I.B.M. 1130 computer using extended precision with
printout at each increment of 5° from 0° to 360° for the sessile drop shapes. To obtain the pendant-
drop profiles, a starting value of ¢ = 180° was used instead of 0° and the increment 8¢ made
negative. This was regarded as more realistic than using Bashforth & Adams’s device of assigning
a negative value of f for these profiles. Thus pendant-drop profiles would start with a negative
value of 8¢ so that the angle would successively reduce until the first inflexion point is reached.
Here 8¢ changes sign and ¢ now increases to the second inflexion point where 8¢ changes sign
again. Most pendant-drop tables were compiled for angles of ¢ from 180° to the second inflexion
point, while a few were generated over many cycles in order to obtain successive bridge or neck
conditions for a given shape factor.

The range of the shape factor f, of the tables of this study, extends from 10-6 to 10¢ with
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increments of g varying according to the position in the range. The increments were relatively
small in the range 8 = 0.1 to 103 and very large outside this range. The range of # for pendant-
drop profiles covered the range 10~* to 102, though it should be noted that very little useful
information was obtained for values greater than # = 8. The pendant-drop values of § in these
tables correspond to the negative values given in Bashforth & Adams’s tables.

In order to obtain profiles of menisci which do not cross the axis of symmetry one must clearly
find some different but well-defined starting-point. The starting-point chosen for the liquid-
bridge tables of this study was at the midpoint of the neck of the liquid-bridge profile of figure 2 G,
i.e. where ¢ = 270°. The starting values of the profile parameters for these conditions are given
in table 1. The base measurement R, is taken as the value of Ry(270°) because the radius 4 no
longer has any significance. The profiles were generated in both directions, i.e. + 8¢ over a range
usually extending 90° in either direction or to the first inflexion point, whichever appeared
sooner. Both the value of £’, the shape constant, and the value of Ry/Rn(270°) determine the
actual shape of the profile. Therefore for each selected value of 3’ separate tables were generated
for each of a series of starting values of Ry/Rn(270°). Some tables were generated over many cycles
to investigate changes of shape of successive bridge conditions with a constant value of £.

Shape factors

In making equation (3) dimensionless the physical constants are grouped together as already
shown in equation (5). R,, the common multiplier, may be any well-defined linear dimension of
the profile. Bashforth & Adams used the radius of curvature, b, at the axis of symmetry for R,,.
Many other dimensions such as the maximum radius of a sessile or pendant drop, the vertical
radius of curvature, Ry(90°), at the maximum diameter, the vertical height from free surface, Z,,
or the vertical radius of curvature at the minimum value of X; i.e. Ry(270°), of a liquid-bridge
profile may be used as a base measurement.

In this study the shape factors used are Bashforth & Adams’s f# (equation (7)) to the base b, the
liquid bridge shape factor £’ (equation (12)) to the base Rn(270°) and the liquid-bridge shape
factor B” to the base Ry(270°) (for figures 14 to 16) where

B" = pgR,(270°)y. (13)

In table 2 these shape factors are defined and their related values derived from the computed
tables for sessile-drop conditions. They were obtained from the value of Rn/6(270°) and R,/5(270°)
by multiplying £ by the second power of Rn/6(270°) /b or Ry(270°) /b to give ' and B” respectively.
The physical significance of these characteristic dimensions is shown in figure 3 where the shaded
side of the profile indicates that phase of greater density. This figure is similar to that produced by
Lord Kelvin (1886) but with the differences that here the relation between distorted nodoids
(sessile drop) and distorted unduloids (pendant drops) is given unambiguously and that the
shapes are somewhat more accurately derived.

The radius of curvature 5 of the sessile-drop tables is virtually impossible to measure experi-
mentally, therefore almost any other base value is more convenient. Sugden (1921) converted
Bashforth & Adams’s tables to a base Ry(90°), i.e. the maximum radius of a sessile drop, whilst
Smolders (1961) and later Tawde & Parvatikar (1951, 1954, 1958) did the same thing, the former to
obtain the surface tension from a sessile-drop profile, the latter to obtain corrections for the rise
of liquid in a capillary tube.

In addition to the profile shape it will be seen (from table 3) that the force acting in the meniscus
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and the volume enclosed between two parallel horizontal planes and the meniscus profile have
also been calculated in the tables. These calculations were carried out in the following way.

Forces acting on a meniscus and meniscus volume

It is implicit in earlier studies that axisymmetric profiles crossing the axis of symmetry possess
certain simple volume/force relations: for instance the total force supporting a pendant drop

A
e

S

X(90°, min)/b

THE ROYAL
SOCIETY

X(90°, max)/b

PHILOSOPHICAL
TRANSACTIONS
OF

R,(90°)/b

R, (270°)/b

R,(270°) /b =

Ficure 3. Characteristic dimensions of sessile and pendant drop profiles for f = 0.5, b = 1.0.

d
<@ TABLE 2. SHAPE FACTORS
j Bashforth & Adams base R,(270°) = 1.0 base R,(270°) = 1.0
[ e A} r —A )

5 E 4 R.(270°) 4 R, (270°)
= 23| Yt (equation (12)) R,(270°) (equation (13)) R,(270°)

o 0 0 -1.0 0 -1.0
=i 0.01 0.000000 (4) —0.986963 0.000000 (4) —1.013209
E O 0.1 0.000327 —0.889628 0.000258 —1.124065
=w 1.0 0.063589 —0.561770 0.020068 —1.780088
- 5.0 0.588890 —0.363725 0.077480 —2.756907
5 Z 10.0 1.141913 —0.306775 0.109856 —3.259719
= 9 50.0 3.472324 —0.221882 0.170949 —4.506892
E = 100 4.948845 —0.197727 0.193794 —5.057471
035 500 9.518964 —0.157801 0.237032 —6.337115
8 72} 1000 11.954798 —0.145238 0.252174 —6.885264
= Z 10000 22.034576 —0.115102 0.291924 —8.687951
E é 100000 35.171252 —0.095446 0.320410 —10.477095

[

1000000 51.609856 —0.081431 0.342225 —12.280342
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equals the mass of the drop times the gravitational acceleration. For a sessile drop a similar
equilibrium of forces has been demonstrated (Padday 1963).

Itis well known (Gillespie & Rose 1968; Cross & Picknett 1968; Princen 1968; Derjaguin 1968)
that the total force due to surface effects contains two terms, one due to capillary pressure acting
across the whole horizontal surface and another due to the surface tension pull adding a further
extra force at the triple phase boundary.

If the total force acting on a horizontal plane crossing an axisymmetric meniscus is F, then

F=nX¥Z+Z,) pg—2nXysin ¢

1 1
I -2Y I DY .
=7X (Rv+Rh) v —2mXysin @, (14)
which rearranged in dimensionless form, gives
F _ v X2?(R, BL’ 2my X .
PRy~ "Ry Ry (Rv' Rh) " ek R, (15)

where R, is again some linear dimension of the meniscus profile.

The force columns of tables 3 A and B were derived using equation (15) with 4 as the appropriate

base value R,. The force column of table 3¢, however, required the use of equation (16) which is
merely equation (15) with the sign of the second term changed,

F m [ X ]2 [Rh(270°) +Rh(270°)] +?17 X

B’ Rn(270°)

pgR(270°) ~ B’

Thischange of sign wasimportant because in compiling theliquid bridge data (table 3 ¢) the sessile-

Ru(270°)

Rv Rh

sin @. (16)

drop profile of figure 3 was first turned upside down (rotated through 180°) to give the captive-
bubble profile. It was then necessary to change the sign of the X/R, coordinate arbitrarily so as
to conform to the usual sign convention of an X coordinate. Although this gave general consis-
tency to the signs it was sometimes easier to adopt some arbitrary system and designate signs by
inspection.

The force as here derived is directly related to the volume of liquid forming the meniscus.
Bashforth & Adams (1883) and Bouasse (1924) recognized these relations, the latter author giving
an extensive phenomenological description of volume relations, the former authors a calculation
of some of their values.

It has been shown (Padday 1963) that the forces acting on a closed meniscus (i.e. cutting the
axis of symmetry) may be derived by using Archimedes’s principle as shown in figure 4. For the
sessile drop, 4, or the pendant drop, B, the first term of equation (15) represents the reduced
force acting on the cylindrical volume LL’A’A obtained by rotating either figure on its vertical
axis of symmetry. The second term represents the surface tension force corresponding to that
force on the volume LL’A’OA. This second force is positive for the sessile-drop meniscus and
negative for the pendant-drop profile. Thus the difference between capillary pressure and surface
tension forces gives the shaded volumes in figures 4 4 and 4 B—the volumes of the respective drops.

It should be noted that the total force acting on the sessile drop, A, at the plane EE’ is less than
that at CC’ because the volume of the sessile drop at EE’ is decreased by the volume of the vapour
bridge which has not been formed at CC’.

The force acting on the vapour bridge at EE’ of figure 44 is equivalent to the volume of
EPE'D’'C’'B’A’OABCD which equals the volume of the cylinder EEEMM’ because at EE’ the
only vertical force acting is capillary pressure. The force acting on the vapour bridge at DD’ is

24 Vol. 269. A.
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greater than at EE’ and corresponds to the force on the volume of the cylinder EE'M’M plus the
volume of the bridge E'PEDD’ which again equals the force on the volume of liquid forming
the sessile drop DD’ G’B’A’OABC.

In figure 4 C the force acting on a liquid bridge is that of an apparently unbounded meniscus.
Therefore the force on the volume of liquid in the shaded area of the liquid bridge is derived
according to equation (16). It is this force that is included in table 3c.

N—

180°

Ficure 4. The volumes of meniscus profiles supported by surface forces.
(4) Sessile drop; (B) pendant drop; (C) liquid bridge.

The volumes, in dimensionless form, swept out by rotating the sessile-drop, pendant-drop and
liquid-bridge profiles on their axes of symmetry were integrated and included in the tables. The
volume of increments, 3V, of closed menisci up to the first 20° were assumed to be the volumes of
spherical segments given by

8V = n[Rn(22— (£ -82)*) — ${Z3 + (Z-38Z)3}]. (17)
However above 20°, volume increments were assumed to be segments of a cone given by
8V = m8Z[X? - X5X + 4(5X)*]. (18)

Equation (18) was in most cases somewhat too inaccurate to be used for anything more than
a general check on the force calculations. It will be seen that for closed menisci the volume
represents the total volume of the drop and it equalled the force calculated as a dimensionless
volume. That it did not do so sufficiently accurately represented an error due to cumulative
underestimates of the volume resulting from the use of equation (18).

The main point to come out from this treatment is that the force acting in a liquid bridge may
be represented by a volume of liquid displaced from the free surface. This displaced volume bore
no relation to the volume of an axisymmetric liquid bridge between two parallel planes. However,
the difference between the forces between those two parallel planes does give the volume of liquid
actually forming the bridge.
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Tables of meniscus profiles

Examples of the tables of profiles produced in this study are shown in tables 3, B and c. In all
tables the values of X/R,, Z/R,, the two principal radii of curvature, Ry/R, and Ryn/R,, the volume
and the force are shown as a function of the angle ¢. In table 3 A the profile of a distorted nodoid,
which is plotted out in figure 3, produces the shape of a sessile drop (¢ = 0 to 180°) and a vapour
bridge (¢ = 180 to 360°). When inverted, this profile produces that of a captive bubble (¢ = 0 to
180°) and a liquid bridge (¢ = 180 to 360°).

Table 3B shows the corresponding profile properties of a distorted unduloid which in the form
presented produces a pendant drop with the same shape factor f as the sessile drop. This is also
plotted in figure 3 which, when inverted, becomes the shape of an emergent bubble.

An example of the liquid bridge tables is shown in table 3c. Here the starting conditions differ
from those of tables 3 and 3B and are found at ¢ = 270°. This profile has not been plotted here
but others like it are shown and discussed in relation to figure 11.

In all, 190 tables of pendant and sessile-drop profiles have been generated and a further
200 tables for open menisci of the liquid bridge type. A small set of tables has also been generated
for the special conditions relating to the profile formed with a rod at a free liquid surface.

Clearly, it is not possible to publish such a wide set of data here, so only the most important
features of these profiles will be discussed. They will be discussed in part II, and are presented
with the aid of graphs, some of which have been drawn with great accuracy, using an automatic
graph plotter with a Hewlett-Packard 9100 A computer.

Errors

The tables calculated by this procedure possessed errors of three basic kinds:

(1) Arithmetic errors, arising within the computer, due to calculation with insufficient decimal
digits.

(2) Errors due to using a first-order integration method with a second-order equation.

(3) Errors arising at inflexion points on the profile.

Arithmetic errors within the computer were very small when compared with other errors.
However, a cumulative arithmetic error arose during the summing of increments of the angle ¢.
This error was always negative and amounted to — 8.83 x 10~ 9. This meant that for a nominal
angle of 360° the true computed angle was 359° 59’ 59”. This is not serious and is well below
experimental error. ‘

The second type of error arose mainly because the assumption that Ry is invariant over a very
small increment is of course incorrect. Thus the calculated values of 8X and 8Z according to
equations (10) and (11) also possess an error. An estimate of this error was made by calculating
the values of X/b, Z[b, Ry[b and Rp/b with different increments of 8¢. These results are seen in
table 4 and indicate that when 8¢ = 0.02° the general error was no greater than + 1 x 10~3 9%, in
any of these terms. In general one may regard four figures of decimal of the values tabulated as
correct but should take at least five figures for interpolation. In table 5 a slightly wider comparison
of the figures of Bashforth & Adams is made with the corresponding figures of this study for an
increment 8¢ = 0.02°.

The very wide set of data obtained in this study has enabled comparisons with many other
published data and in all cases the errors have been no greater than those recorded above except
for the conditions of a change in gradient in the profile.

24-2
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TABLE 3A. DISTORTED NODOID (SESSILE DROP/CAPTIVE BUBBLE) PROFILE

solutions of the meniscus equation f = 0.5000

angle vert. radius, horiz. radius, volume, force,

+¢ + X/b Z/b R,/b R,/b Vb3 Flpgh
0 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000
5 0.087114 0.003802 0.998573 0.999527 0.000045 0.000045
10 0.173321 0.015149 0.994342 0.998119 0.000716 0.000718
4 15 0.257736 0.033859 0.987429 0.995818 0.003550 0.003560
> < 20 0.339520 0.059639 0.978034 0.992692 0.010897 0.010934
—~ 25 0.417898 0.092096 0.966412 0.988833 0.025698 0.025744
i 30 0.492174 0.130752 0.952856 0.984349 0.051045 0.051104
> E 35 0.561740 0.175059 0.937682 0.979364 0.089917 0.089991
O r-u 40 0.626083 0.224418 0.921209 0.974013 0.144846 0.144938
e 45 0.684787 0.278195 0.903746 0.968435 0.217663 0.217774
@) 50 0.737530 0.335737 0.885577 0.9627717 0.309328 0.309460
T O 55 0.784079 0.396381 0.866956 0.957184 0.419843 0.419996
— o 60 0.824286 0.459472 0.848103 0.951804 0.548258 0.548431
=< ‘£ 65 0.858081 0.524366 0.829200 0.946788 0.692739 0.692931
Yo 70 0.885462 0.590437 0.810389 0.942289 0.850706 0.850913
T 75 0.906489 0.657086 0.791781 0.938466 1.019001 1.019221
5 S 80 0.921277 0.723740 0.773447 0.935490 1.194087 1.1943817
ag O 85 0.929993 0.789858 0.755432 0.933546 1.372247 1.372482
oz 90 0.932846 0.854927 0.737748 0.932846 1.549773 1.550009
EE 95 0.930083 0.918471 0.720381 0.933635 1.723147 1.723382
100 0.921988 0.980042 0.703291 0.936211 1.889187 1.889416
105 0.908878 1.039227 0.686414 0.940939 2.045160 2.045380
110 0.891100 1.095645 0.669661 0.948289 2.188874 2.189080
115 0.869032 1.148951 0.652919 0.958870 2.318719 2.318908
120 0.843078 1.198831 0.636052 0.973502 2.433689 2.433855
125 0.813672 1.245009 0.618900 0.993309 2.533362 2.533503
130 0.781277 1.287247 0.601279 1.019883 2.617865 2.617977
135 0.746380 1.825347 0.582991 1.055539 2.687805 2.687882
140 0.709500 1.359158 0.563823 1.103783 2.744186 2.744225
145 0.671176 1.388581 0.543565 1.170157 2.788323 2.788318
150 0.631971 1.413574 0.522027 1.263938 2.821731 2.821679
155 0.592458 1.434159 0.499065 1.401869 2.846035 2.845930
< 160 0.553212 1.450433 0.474615 1.617474 2.862864 2.862702
165 0.514791 1.462564 0.448729 1.988985 2.873776 2.873553
- 170 0.477719 1.470800 0.421602 2.751040 2.880184 2.879895
< S 175 0.442458 1.475460 0.393585 5.076501 2.883311 2.882954
6 — 180 0.409388 1.476922 0.365169  162889.321166 2.884165 2.883739
(=4 f 185 0.378790 1.475604 0.336940 —4.346258 2.883539 2.883044
O 190 0.350834 1.471941 0.309509 —2.020406 2.882020 2.881458
TO 195 0.325587 1.466361 0.283438 —1.257984 2.880025 2.879399
o 200 0.303019 1.459262 0.259179 —0.885975 2.877829 2.877145
205 0.283027 1.450997 0.237040 —~0.669705 2.875605 2.874868
= <£ 210 0.265459 1.441866 0.217181 —0.530922 2.873452 2.872668

J

T © 215 0.250131 1.432114 0.199634 —0.436092 2.871419 2.870596
- 'C', . 220 0.236848 1.421934 0.184335 —0.368472 2.869526 2.868669
8 <0 225 0.225419 1.411473 0.171157 —0.318792 2.867773 2.866888
(@] ‘2 230 0.215665 1.400838 0.159938 —0.281531 2.866150 2.865243
= 3 235 0.207423 1.390108 0.150506 —0.253217 2.864643 2.863719
E - 240 0.200552 1.379332 0.142697 —0.231578 2.863236 2.862299
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TABLE 3A (cont.)

angle vert. radius, horiz. radius, volume, force,

+¢ + X/b Z/b R,[b R, /b Vb Flpgh®
245 0.194932 1.368545 0.136358 —0.215084 2.861912 2.860966
250 0.190464 1.357766 0.131361 -0.202688 2.860656 2.859704
255 0.187067 1.347001 0.127599 —0.193666 2.859452 2.858497
260 0.184683 1.336253 0.124991 —0.187532 2.858287 2.857330
265 0.183268 1.325515 0.123480 -—-0.183968 2.857146 2.856188
o 270 0.182799 1.314780 0.123033 —0.182799 2.856018 2.855060

_ g
o \‘\‘]\\»\f} 275 0.183268 1.304038 0.123644 —0.183968 2.854888 2.853930
— 280 0.184686 1.293280 0.125329 —0.187535 2.853746 2.852786
< 285 0.187078 1.282495 0.128131 —0.193677 2.852576 2.851614
>" >.‘ 290 0.190491 1.271678 0.132120 —0.202716 2.851366 2.850400
o ~ 295 0.194989 1.260828 0.137392 —0.215146 2.850102 2.849128
Qf‘ E 300 0.200656 1.249951 0.144072 —0.231698 2.848766 2.847782
E U 305 0.207600 1.239062 0.152314 —0.253432 2.847342 2.846344
O 310 0.215950 1.228190 0.162300 —0.281901 2.845812 2.844796
= v 315 0.225861 1.217385 0.174233 —0.319414 2.844158 2.843118
-l N 320 0.237513 1.206720 0.188334 —0.369503 2.842362 2.841292
5 Z 325 0.251108 1.196302 0.204819 —0.437791 2.840411 2.839306
E g 330 0.266866 1.186277 0.223876 —0.533729 2.838302 2.837154
-9

8 2 8 335 0.285017 1.176844 0.245626 —0.674402 2.836050 2.834851
(@) (2 340 0.305784 1.168259 0.270077 —0.894040 2.833703 2.832447
= § 345 0.329361 1.160843 0.297065 - 1.272530 2.831361 2.830041
E - 350 0.355889 1.154980 0.326218 —2.049426 2.829210 2.827821
355 0.385421 1.151112 0.356926 —4.421948 2.827554 2.826092
360 0.417893 1.149714 0.388369 --76460.809631 2.826865 2.825328

TABLE 3B. DISTORTED UNDULOID (PENDANT DROP/EMERGENT BUBBLE) PROFILE

solutions of the meniscus equation f = +0.5000

angle
— Ao vert. radius, horiz. radius, volume, force,

¢ 180—¢ + X/b Z/b R, /b R, /b Vib® Flpgh?

180 0 0.000000 —0.000000 1.000000 1.000000 0.000000 0.000000

175 5 0.087197 —0.003808 1.001432 1.000474 0.000045 0.000045

170 10 0.173978 —0.015235 1.005754 1.001899 0.000726 0.000727

165 15 0.259926 -0.034294 1.013056 1.004277 0.003663 0.003662

160 20 0.344621 —0.061005 1.023493 1.007606 0.011513 0.011496
o 155 25 0.427640 —0.095402 1.037298 1.011883 0.027829 0.027822
TN 150 30 0.508552 —0.137535 1.054797 1.017104 0.057082 0.057091
p—d
< 145 35 0.586918 —0.187476 1.076432 1.023261 0.104450 0.104479
>" >-‘ 140 40 0.662289 —0.245331 1.102803 1.030339 0.175702 0.175758
O =~ 135 45 0.734196 —0.311250 1.134722 1.038311 0.277060 0.277149
m E 130 50 0.802153 —0.385447 1.173308 1.047136 0.415055 0.415182
O 125 55 0.865638 —0.468232 1.220127 1.056749 0.596409 0.596580
m o 120 60 0.924090 —0.560051 1.277449 1.067048 0.827969 0.828189
= 115 65 0.976884 —0.661564 1.348682 1.077872 1.116725 1.116998
- 110 70 1.023298 —0.773767 1.439224 1.088971 1.470023 1.470351
5 Z 105 75 1.062460 —0.898223 1.558245 1.099939 1.896126 1.896510
T 9 100 80 1.093237 —1.037530 1.722899 1.110102 2.405604 2.406039
Q.B ' 95 85 1.113996 —1.196404 1.970270 1.118251 3.014827 3.015304
8 <0 90 90 1.121951 —1.384818 2.402188 1.121951 3.756469 3.756966

W)

gz 85 95 1.110511 —1.631772 3.483658 1.114753 4.726262 4.726714
EE 80.860 99.140 0.999111 —2.400276 —5.310117 1.011959 7.436129 7.379044

90 90 0.956438 —2.866661 —2.088222 0.956438 8.819217 8.761918
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TABLE 3B (cont.)
angle
——Ht— vert. radius, horiz. radius, volume, force,
1) 180—¢ + X/b - ZJb R, /b R,/b V/b3 Flpgb®
95 85 0.963626 —3.035232 —1.813518 0.967307 9.306065 9.248778
100 80 0.983360 —3.185762 —1.682502 0.998530 9.753220 9.695953
105 75 1.014467 —3.326245 —1.625295 1.050254 10.192693 10.135441
110 70 1.056870 —3.460751 —-1.614196 1.124698 10.645062 10.587813
' 115 65 1.111048 --3.391513 —~1.635377 1.225906 11.126846 11.069584
/;;f/ 1 120 60 1.177783 —3.719649 —1.680318 1.359988 11.653119 11.595825
<
A |
— 125 55 1.257974 — 3.845450 —1.742487 1.535704 12.238288 12.180940
< >_‘ 130 50 1.352457 —3.968505 —1.815996 1.765508 12.895731 12.838311
>" 135 45 1.461837 —4.087798 —1.895340 2.067351 13.636490 13.578977
o = 140 40 1.586361 —4.201833 —1.975844 2.467940 14.467146 14.409528
Qf‘ E 145 35 1.725867 —4.308816 —2.054446 3.008958 15.387176 15.329441
= O 150 30 1.879846 —4.406855 -2.130349 3.759694 16.386124  16.328263
E g 155 25 2.047601 —4.494128 —2.205261 4.845038 17.440851  17.382853
160 20 2.228451 —4.568985 —2.283253 6.515557 18.541551 18.454593
165 15 2.421964 —4.629941 —2.370601 9.357753 — 19.485988
170 10 2.628191 —4.675591 —2.476061 15.135151 — 20.395529
175 5 2.847947 —4.704435 —2.612187 32.676528 —_ 21.068778

TaBLE 3c. LIQUID BRIDGE PROFILE

solution of meniscus equation for the liquid bridge £ = 0.100000. R,(270°) = —0.300000

PHILOSOPHICAL
TRANSACTIONS
OF

angle vert. radius  horiz. radius volume force

¢ + X/R,(270°) Z/R,(270°) R /R, (270°)  R,/R, (270°) V |R,(270°)3 F [pgR,(270°)3

0 1.338170 0.750395 —0.442812 —330236.943481 = —127.054822 —127.043443

5 1.377321 0.748678 —0.455542  —15.802265 —127.064858 —127.053886

10 1.417267 0.743411 —0.468062 —8.161530 —127.097263 —127.086688

15 1.457654 0.734449 —0.480231 —b5.631858 —127.155546 —127.145351

20 1.498099 0.721689 —0.491917 —4.380101 —127.243222 —127.233383

25 1.538197 0.705072 —0.502999 —3.639653 —127.363669 —127.354157

30 1.577524 0.684592 —0.513368 —3.155027 —127.519959 —127.510740

35 1.615651 0.660295 —0.522933 —2.816786 —127.714685 —127.705723

40 1.652147 0.632283 —0.531620 —2.570273 —127.949778 —127.941034

45 1.686592 0.600713 —0.5639371 —2.385193 —128.226338 —128.217779

50 1.718583 0.565794 —0.546146 —2.243445 —128.544510 —128.536099

P 55 1.747743 0.527786 —0.551918 —2.133595 —128.903363 — 128.895066
<] 60 1.773726 0.486994 —0.556674 —2.048119 —129.300838 —129.292619
2 65 1.796227 0 443765 —0.560414 —1.981914 —129.733730 —129.725565
>_‘ >-1 70 1.814983 0.398479 —0.563144 —1.931463 —130.197749 —130.189613
O = 75 1.829780 0.351545 —0.564880 —1.894326 —130.687621 —130.679498
m a8} 80 1.840454 0.303394 —0.565641 —1.868845 —131.197238 —131.189111
e 85 1.846895 0.254472 —0.565451 —1.853949 —131.719854 —131.711716

E @) 90 1.849045 0.205232 —0.564337 —1.849045 —132.248319 —132.240170
- 8 95 1.846902 0.156128 —0.562324 —1.853958 —132.775319 —132.767211
- 100 1.840517 0,107610 —0.559440 —1.868910 —133.293635 —133.285577
<Z 105 1.829990 0.060116 —0.555712 —1.894546 —133.796382 —133.788392
o (@) 110 1.815472 0.014063 —0.551169 —1.931987 —134.277234 —134.269334
E = 115 1.797162 —0.030150 —0.545836 —1.982951 —134.730619 —134.722832
@) 2 6 120 1.775299 —0.072157 —0.539743 —2.049941 —135.151861 —135.144214

wnn

9(2 125 1.750160 —0.111624 —0.532920 —2.136555 —135.537291 —135.529816
E é 130 1.722060 —0.148254 —0.525398 —2.247994 —135.884297 —135.877024
B = 135 1.691337 —0.181790 —0.517213 —2.391917 —136.191336 —136.184299
140 1.658355 —0.212019 —0.508406 —2.579949 —136.457882 —136.451117

145 1.623494 —0.238776 —0.499023 —2.830485 —136.684363 —136.677903

150 1.587144 —0.261941 —0.489117 —3.174300 —136.872037 —136.865912
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TABLE 3¢ (cont.)

angle vert. radius,  horiz. radius, volume, force,

+o + X/R,(270°) Z/R,(270°) R,/R,(270°) R,/R,(270°) V/R,(270°)3 FlpgR,(270°)3

155 1.549698 —0.281442 —0.478750 —3.666915 —137.022859 —137.017099

160 1.511548 —0.297252 —0.467992 —4.419493 —137.139333 —137.133962

165 1.473073 —0.309390 —0.456918 —5.691557 —137.224357 —137.219398

170 1.434641 —0.317917 —0.445615 —8.261848 —137.281075 —137.276545

, 175 1.396595 —0.322933 —0.434174 —16.024438 —137.312736 —137.308645

_g 180 1.359258 —0.324571 —0.422491 883214.459716 —137.322576 —137.318929
Ty

—_ 185 1.322918 —0.322992 —0.411266 15.178535 —137.313748 —137.310511

< 190 1.287837 —0.318380 —0.399998 7.416300 —137.289149 —137.286316

>-( >" 195 1.254240 —0.310939 —0.388986 4.845989 —137.251464 —137.249018

o =~ 200 1.222322 —0.300882 —0.378324 3.573820 —137.203095 —137.201018

Q{l = 205 1.192244 —0.288431 —0.368100 2.821084 —137.146150 —137.144417

) 5 210 1.164138 —0.273806 —0.358395 2.328272 —137.082439 —137.081022

I O 215 1.138106 —0.257229 —0.349280 1.984225 —137.013492 —137.012358

=w 220 1.114227 —0.238913 —0.340818 1.733428 —136.940571 —136.939687

- 225 1.092557 —0.219062 —0.333062 1.545108 —136.864703 —136.864034

5 Z 230 1.073135 —0.197873 —0.326055 1.400878 —136.786703 —136.786214

T 9 235 1.055985 —0.175530 —0.319835 1.289120 —136.707205 —136.706862

s L—) . 240 1.041121 —0.152204 —0.314428 1.202183 —136.626686 —136.626458

8 5) ° 245 1.028548 —0.128057 —0.309857 1.134877 —136.545499 —136.545357

= Z 250 1.018266 —0.103241 —0.306138 1.083616 —136.463890 —136.463808

I § 255 1.010273 —0.077895 —0.303285 1.045912 —136.382024 —136.381980

A= 260 1.004566 —0.052155 —0.301306 1.020063 —136.300002 —136.299980

265 1.001141 —0.026149 —0.300209 1.004965 —136.217879 —136.217870

270 1.000000 0.000000 —0.300000 1.000000 —136.135681 —136.135681

275 1.001142 0.026169 —0.300681 1.004967 —136.053419 —136.053380

280 1.004575 0.052237 —0.302258 1.020072 —135.971101 —135.971016

285 1.010306 0.078079 —0.304729 1.045945 — 135.888757 — 135.888607

290 1.018344 0.103565 - 0.308095 1.083699 —135.806427 - 135.806200

295 1.028700 0.128561 —0.312353 1.135045 —135.724211 —135.723886

300 1.041385 0.152923 —0.317495 1.202488 —135.642269 —135.641819

305 1.056408 0.176496 —0.323509 1.289635 —135.560843 —135.560238

310 1.073770 0.199115 —0.330377 1.401706 —135.480282 —135.479490

315 1.093467 0.220604 —0.338073 1.546394 —135.401067 —135.400052

- 320 1.115482 0.240771 —0.346560 1.735381 —135.323839 —135.322565

< ‘ 325 1.139786 0.259412 —0.355792 1.987154 —135.249432 —135.247861

—J] 330 1.166326 0.276313 —0.365711 2.332650 —135.178903 —135.177001

§ >" 335 1.195031 0.291248 —0.376243 2.827678 —135.113565 —135.111298

O = 340 1.225799 0.303985 —0.387303 3.583985 —135.055014 —135.052352

m 29} 345 1.258498 0.314287 —0.398793 4.862444 —135.005154 —135.002075

= 350 1.292964 0.321921 —0.410602 7.445934 —134.966211 —134.962695

= O 355 1.328995 0.326657 —0.422609 15.248285 —134.940732 —134.936767

E O 360 1.366353 0.328280 —0.434686 968870.832519 —134.931569 —134.927151
%0}
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Errors were also sought by carrying out the integration process for a given profile from 0 to
360°, and then returning with a negative increment back to zero. Agreement between the
forward and backward integration was within the above errors except in the backward process
from 10 to 0°; then it appeared that forward integration was always more accurate when Ry was
decreasing as in the case of sessile-drop profiles.

TABLE 4. FESTIMATION OF ERRORS

starting conditions: f# = 1.0R, = R, = b =1.0at¢ = 0
values for ¢p = 90°

computation

8¢ X/b Z/b R,Jb R,/b time
calculated to 12 digits of which 7 displayed
5 0.8912161 0.7734379 0.6055558 0.8912161 20s
1 0.8864929 0.7680224 0.6097629 0.8864929 2 min
0.5 0.8858929 0.7673643 0.6102921 0.8858929 4 min
0.2 0.8855318 0.7669714 0.6106100 0.8855318 9 min
0.1 0.8854113 0.76684.08 0.6107160 0.8854113 18 min
0.05 0.8853510 0.7667756 0.6107691 0.8853510 35 min
0.02 0.8853148 0.7667365 0.6108009 0.8853418 1} h
0.01 0.8853027 0.7667234 0.6108115 0.8853027 3h
0.005 0.8852967 0.7667169 0.6108168 0.8852967 6 h
0.88529 0.76671 Bashforth & Adams
TABLE 5. COMPARISON WITH BASHFORTH & ADAMS
B é X/b Z/b L
1.0 10° 0.17300 0.01511 B. & A. 0.00071
0.172998 0.015106 this study 0.000713
90° 0.88529 0.76671 B. & A. 1.24972
0.885314 0.766735 this study 1.249998
180° 0.46853 1.26459 B. & A. 2.25138
0.468529 1.264630 this study 2.251417
100 10° 0.13796 0.01079 B. & A. 0.000336
0.138002 0.010791 this study 0.000336
90° 0.31646 0.14487 B. & A. 0.031987
0.316515 0.144877 this study 0.032004
180° 0.26489 0.20431 B. & A. 0.049445
0.264948 0.204318 this study 0.049469

The pendant-drop profiles were susceptible to errors greater than those with sessile-drop
profiles because the integration process was carried out with values of Ry/b increasing to infinity
and then changing sign. Thus for # values of 0.15 or less for pendant-drop conditions the precision
of the tables was so poor that they had to be recalculated with a smaller increment (8¢ = 0.005)
to avoid large errors in 8Z/b and 8X/b obtained when the profile changed its gradient. These
errors were always immediately obvious because the calculated force which depended critically on
8.X/b would show a sharp decrease if the integration procedure produced excessive errors. In this
event the integrated volume (although itself in slight error) was more accurate than the calcu-
lated force. Volume errors, estimated by using equation (18) for a sphere, were less than 10~ 9.

The coordinates and principal radii of curvature of these tables were always better than
+ 0.1 9, and these errors are certainly less than those likely to be found by experiment.
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3. THE SHAPE PROPERTIES OF AXISYMMETRIC SURFACE PROFILES

Axisymmetric profiles of liquid surfaces are essentially of two main types, those that are
closed and cross the axis of symmetry and those that are open and never cross the axis of sym-
metry. The former type includes the sessile and pendant drops and their inverse shapes, the

-2.0

H

Ficure 5. Sessile drop profiles. Values of £: A, 10%; B, 10%;
G, 10%; D, 10; E, 1; F, 10%; G, 10-2; H, 0.

emergent and captive bubbles, whilst the latter include the rod-in-free-surface, many types of
liquid bridges and the hole-in-liquid produced in a thin layer of liquid at a horizontal solid
surface of low wettability. The general properties of some of these profiles, derived from the
tables computed in the previous section, will now be considered in more detail.

Distorted nodoid profiles (sessile drops and captive bubbles)

The new features of the distorted nodoid profiles of this study are first that Bashforth & Adams’s
tables have been extended into the liquid bridge region, 180 to 360°, and second that the range
of the shape factor £ has been extended to include values down to 10-¢ and up to 108, Some

25 Vol. 269. A.
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shapes in these extended regions, often obtained experimentally, are shown in figure 5. It may be
seen from this figure and from figure 3 that the extent of the distortion from a circular shape
depends on the value S.

At small values of # (below 0.1) the profiles between ¢ = 0 and 130° approximate to a
circle. Between ¢ = 210 and 330° the shape of the corresponding bridge approaches the shape
of a catenoid. This is seen more readily in figure 9, below.

X/R,(90°)

05 08 07 0.8 09 10
0 1 1 1 'I

0.2

ZJR,(90°)

04+

0.6
E

Ficure 6. Shapes of sections of sessile drop menisci with base altered to R,(90°)/b = 1.0.
Values of §: A, 10%; B, 105; C, 10%; D, 10%; E, 102.

As the value of g increases the distorted nodoid becomes successively more distorted up to a
maximum value when £ = co. At this point the shape takes the form of a cylindrical profile the
shape of which is fully described analytically (Princen 1969). Portions of each of several profiles
atlarge f values are shown in figure 6, but with the base measurement changed to Ry(90°)/6 = 1.0
so as to magnify the shape changes.

A general feature of all distorted nodoid curves is that the vertical radius of curvature Ry/b
must always be positive and must always be less than the corresponding absolute value of Ry/b.

In figure 3 the distorted nodoid curve has been extended over four cycles (of the angle ¢) and it
is seen that the value of X/b(min) for each succeeding cycle increases in value. It was found
generally that as each cycle receded from the origin the shape came nearer and nearer to a circle.
However, for the first ten cycles, particularly when f was small, curves were of distinctive shape
with Ry/b varying over wide limits between 0 and 360° of each cycle.


http://rsta.royalsocietypublishing.org/

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PROFILES OF AXIALLY SYMMETRIC MENISCI 283

In figure 7 successive cycles of the profiles of distorted nodoids are shown for large values of g
but with the shape inverted in the form of a captive bubble. It will now be seen that the value of
X/b (min) for successive bridge conditions (i.e. 270, 630, 990°, etc.) increases much more rapidly
and that successive cycles are pulled out and drawn down towards the X/b axis as the value of
f increases. Eventually the loop at very high values of £ corresponds to that of a cylindrical
meniscus.

The bridge conditions of a distorted nodoid profile represent a vapour bridge when forming a
part of a sessile drop profile as in figure 3 and a liquid bridge when forming a part of a captive
bubble profile as in figure 7. All captive bubble profiles must exist above the free liquid level
when the pressure inside them is less than atmospheric.

A
B C
E
D__,//<
B ] !
o~ 9 1 2 X 3

Ficure 7. Successive cycles of the profiles of captive bubbles for large £ values.

A B C D E
b 1 4/10 10 1082 102
8 10 10 10° 104 108
-1.0 e -1.0.
§x‘x~x
%08,
1071 -10
o o
g 5
k2l >
< <
S &
.__10_'2 - — _102
107! 1.0 8 5 10 102 10% 10* 10°10°
| 10 1072 4" 10~ 2x1070  3x107!
—1073 I ] I 1 -10°®
1078 1072 107! i 1.0 10 102

Ficure 8. Relations between shape factors of axisymmetric menisci: R,/R,(270°) as a function of 8, 8 or 8’ for
sessile drops (O); and for liquid bridges between a solid and a free liquid surface ().
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For bridge conditions arising from distorted nodoid profiles the ratio Rn/Ry at 270° (or any other
defined point on the profile) is sufficient to characterize the shape. These two shape factors are
interrelated as shown in figure 8. The shape factor £ as defined by Bashforth & Adams is shown as
the abscissa on a logarithmic scale in figure 8 together with the logarithm of the two other shape
factors defined by table 2. The ordinate of figure 8is given by the logarithm of the ratio Rn/Rv(270°)
or its reciprocal.
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Ficure 9. Sections of bridge profiles. Pendant drop profiles with the following f: A, 0.5; B, 0.3; C, 0.2; D, 0.1;
E, 0.01. Catenoid profile (F) with # = 0.0. Captive bubble bridge profiles with the following £: G, 0.001;
H, 0.01; 1, 0.1; J, 0.2; K, 0.5; L, 1; M, 2; N, 5; O, 10; P, 50; Q, 100; R, 1000.
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Although a meniscus profile may be constructed with any combination of £ and Ry/Ry(270°)
only those combinations that fall on the indicated line of figure 8 give rise to closed menisci of the
distorted nodoid (sessile-drop) type. Other combinations will most generally generate open
menisci as will be described below but, of course, further combinations of Ry/Ry and f can give
rise to closed meniscus profiles when they correspond to bridge conditions of the second or sub-
sequent cycles.

The sections of these distorted nodoid profiles that correspond to liquid or vapour bridge
conditions possess an important distinguishing feature which is best seen in figure 9. In this figure
the base to which all dimensions are related has been converted from & to Ry(270°): so that
Rn(270°) /b = X(270°)/b = 1.0. The value of Z/Ry(270°) at the value ¢ = 270°(i.e. the neck of the
bridge) has arbitrarily been taken as the origin so that the bridge shapes may be seen in the form
of a nest of curves. The feature of importance is that all these curves obtained from distorted
nodoid (sessile-drop) profilesfall inside the shape of a catenoid drawn on the same scale. It will thus
be noted that as the value of  decreases the shape of a liquid bridge derived from a sessile drop becomes nearer
and nearer to that of a catenoid and not, as may be supposed, to that of a circle. However, the impli-
cations of this will be discussed more fully under the section dealing with open menisci.

A few of these distorted nodoid shapes were in principle predicted by Lord Kelvin (1886), but
the parameters of tables on which his diagrams were based do not appear to have been published
at all.

Distorted unduloid profiles (pendant drops and emergent bubbles)

Pendant-drop profiles have been widely used to measure surface tension by the so-called
‘pendant-drop method’. This has given rise to several accurate sets of tables for these profiles
(Bashforth & Adams1883; Andreas ¢t al. 1938; Fordham 1948; Niederhauser & Bartell 1950; Mills
1953; Stauffer 1965). The tables generated in this study extended these tables to cover the neck or
liquid-bridge profiles generated above the first inflexion point on profiles such as that shown in
figure 3. This profile possesses only one inflexion point below the free liquid level but for £ values
lower than 0.3 (# > —0.3 on Bashforth & Adams scale) the shape possesses more than one
inflexion point. Although single cycle unduloid profiles have been published previously (Princen
1969), extensions beyond the first inflexion point, as shown in figure 10, are a new feature and
represent greater precision than Lord Kelvin’s profiles.

A feature of distorted unduloid profiles that cross the axis of symmetry is the change in sign of
the value Ry/b at the inflexion points. Thus after the first change in sign of 8¢ (from negative to
positive because initially ¢ decreases from 180°) the profile, for small values of 2, forms a neck
which represents a liquid bridge for pendant-drop conditions and a vapour bridge for emergent
bubble conditions. Unlike that of liquid bridges derived from captive bubble profiles, the
pressure inside the liquid bridge of a pendant drop is always greater than at a free surface.

The shape of the liquid-bridge sections of some of these unduloid profiles may be seen in
figure 9. The ratio Ry/Rp at the thinnest part of the neck of these liquid bridges is again negative
but is always numerically greater than unity. Thus all these profiles lie outside the shape of
the catenoid.

General features of closed menisci

It is thus seen that as a general principle the bridge conditions of closed menisci may be
characterized readily by comparison with the shape of a catenoid, distorted unduloid (or pendant-
drop) shapes lying outside the catenoid and distorted nodoid (or captive bubble) shapes lying
inside the catenoid.
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The constraint that the profile crosses the axis of symmetry for solutions of equation (4) means
that the shape of a profile is completely described either by f or by the ratio Ry/Ry at ¢ 270° or
some other fixed point.

The shapes of distorted unduloid or distorted nodoid closed menisci can never be adjusted
or contrived to fit certain shapes met in practice, such as that of the rod-in-free-surface. It is
known from direct experiment that liquid bridge profiles for a given value of 8, #’, " (see table 2)

.

N

-2

e

0
Ficure 10. Distorted unduloid (pendant drop) profiles. Values of §: A, 0.01; B, 0.10; C, 0.20; D, 0.40;
E, 0.50; F, 0.70; G, 1.0; H, 2.0; I, 4.0; J, 10.0.

may vary in shape according to the value of Ry/Ry(270°). This is because many of the shapes
actually found corresponded to axisymmetric menisci that never crossed the axis of symmetry.
As profiles of this type have special features it will be necessary to consider them separately.

Profiles which do not cross the axis of symmetry (open profiles)

It has been noted already that if the shape factor pgR3/y of equation (4) is fixed there are still
an infinite number of solutions each of which depends on the starting value of Ru/Ry. As each
solution appears to extend infinitely in both directions only a section of each will be considered
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in this study and this section is specifically the liquid-bridge profile which forms a part of the
whole profile.

In figure 11, the shapes of five open menisci have been obtained for a constant value of
B’ = pgRy(270°)2]y and with different values of Ry/Rn(270°) varying between —0.7 and — 1.0.
The starting-point of each curve was adjusted so that the free liquid level of each was positioned
at itscorrect distance above the free liquid surface. All these curves are extensionsof profiles which
are basically of the captive bubble type.

— X/R,(270°)

20 2'5' .\'\.30

Ficure 11. Profiles of open menisci over successive cycles. f’ = 0.1. Values of R,/R,(270°):
A, —0.7; B, —0.8; C, —0.84; D, —0.9; E, — 1.0.

Distorted nodoid tables for closed menisci indicate that when Ry/Rn(270°) = — 0.522 (approx.)
and #” = 0.1 the upper arm of the bridge curve should swing under the starting position and meet
the axis of symmetry to form the closed meniscus of a true captive bubble. As the value of Ry/Ry
decreases, this upper arm no longer swings under but instead passes through an inflexion point
which leads into a horizontal unduloid meniscus which is seen in figure 11, This meniscus corre-
sponds to the improbable condition of rings of liquid hanging from a ceiling.

The lower arm of the liquid-bridge profile given by this method will curve upwards, the
real value of Ry being always negative and forming successive cycles of a distorted nodoid, as
shown in the figure.

At some point, in this case when ' = 0.1 and Ry/Rn = — 0.84 (approx.) the lower arm of the
liquid bridge meets the free surface at ¢ = 360°. For this special condition the value of

{Z(360°) — Z(270°)}/Rn(270°)
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must equal the starting value Z,/Rn(270°) exactly. This condition then gives the profile of a
meniscus of a rod-in-free-surface. Such profiles reproduce those obtained in more detail by
others (White & Tallmadge 1965; Huh & Scriven 1969). Between ¢ = 350° and 360° Ry and Ry
both became very large as the lower arm of the meniscus approached the free surface asymptoti-
cally and this led to errors of the type obtained with pendant-drop profiles where the gradient
changed sign.

The condition that the profile just meets the free surface imposes a restraint on solutions of
equation (4) which means that a unique set of tables for this condition may be given by defining
a single parameter; either the shape factor £’ or the starting value Ry/Rn(270°). The relation
between ' and Ry/Ry(270°) for the rod-in-free-surface meniscus is shown in figure 8.

C

X/R,(270°)

L] T T ] 1|0 \IKA

Z|R,(270°)

Ficure 12. Profiles of open menisci over successive cycles. §” = 0.1.
Values of R [R,(270°): A, —1.1; B, —1.5; G, —2.0. ’

When the value of Ry/Rn(270°) is even smaller than the rod-in-free-surface value the lower arm
of the liquid-bridge profile first passes through an inflexion point and then produces distorted
nodoids corresponding to vapour bridges of sessile drop menisci. These profiles may be seen in
both figures 11 and 12.

In figure 12 the curves of open menisci, again with the same 8’ = 0.1 but with lower starting
values of Ry/Rn(270°), are shown and it may be seen that the shape of the lower arm of these liquid
bridges, although a distorted nodoid below the origin, is beginning to take the form of a pendant
drop. In figure 13 further profiles are shown for even lower values of Ry/Rn(270°) within
which range the profile passes through the closed shape of the pendant drop. It may be
seen that the open menisci pass from a distorted unduloid to a distorted nodoid shape as the
profile is generated. This change is accompanied by changes from liquid bridge to vapour
bridge profiles.

In curve C of figure 13 the upper arm of the liquid bridge did not form the horizontal unduloids
expected. Instead the curve reached some point of greatly reduced pressure and then formed
continuous nodoids descending to the origin. It is not yet known if this is a genuine solution of
equation (3) or an artefact due to an accumulation of errors. If the former, then it leads to the
interesting possibility that all curves are related and are formed from extensions to closed menisci
very far from their origin.
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Liquid bridges derived from open menisci

In order to compare the shapes of liquid bridges it was found helpful to transfer the base
measurement R, of equation (4) to the value of Ry/6(270°). This was done merely by dividing all
dimensions in tables generated to base 4, by the appropriate value of Ry/b at (270°). The shape
factor of the new table then becomes §” of table 2.

115

X/R,(270°) 20

Z/R,(210°)

Ficure 13. Profiles of successive menisci over successive cycles. f = 0.1.
Values of R,/R,(270°): A, —2.0; B, —3.0; C, —4.0.

Atsmall values of # (or #”) it was noted that liquid bridges derived from closed menisci approxi-
mated in shape to a catenoid as shown in figure 9. For this special condition it will be seen from
figure 8 that the pressures of such menisci are low because the ratio Ry/Rn(270°) very nearly equals
— 1.0, which implies very low capillary pressure. However, other curves at the same low " value

26 Vol. 269. A.
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Ficure 14. Liquid bridge shapes with base altered to R,(270°) and at small 8”. 87 = pgR%y = 10-5.
Values of R,/R,: A, —1.0; B, —0.9; C, —0.5; D, —0.2; E, —0.1; F, —0.001.
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Ficure 15. Liquid bridge shapes with base altered to R,(270°) at constant R,/ R;(270°) = —0.25.
Values of g”: A, 10~3; B, 10-?; C, 0.12; D, 0.2; E, 0.33; F, 1.0.


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PROFILES OF AXTALLY SYMMETRIC MENISCI 291

may be derived for open menisci, and a selection of such curves is plotted in figure 14, to the base
Ry(270°).

An important feature of these profiles is that both arms of each bridge profile are symmetrical.
This is because the curve is not distorted by gravity when the value of y is very large compared
with the experimental quantity pgR,(270°)2 or pgRy(270°)2, i.e. A" is small. A second feature is

1.2}

Z|R,(270°)

— 04

- 08

- 1.2

{X— X (270°)}/R, (270°)

Frcure 16. Liquid bridge shapes with base altered to R,(270°) at constant §” = 1.0. Values of R,/R,(270°):
A, —-10.0; B, —1.0; G, —0.8; D, —0-5; E, —0.4; F, —0.3; G, —0.2; H, —0.1.

that the shape changes from that of a catenoid to that of a semicircle as the ratio Ry/Rn(270°)
increases from — 1.0 to 0. The bridge profile of a meniscus between two spheres or between a
sphere and a plate will thus approximate to a circle only when the angle ¢ for liquid/solid contact
is within + 30° of 270°. Only when this is so will the ratio Ry/Rn(270°) become sufficiently near
zero for the profile to approximate to a semicircle.

The effect of changes of #” (or £’ and of Ry/Rn(270°) on the shape of the bridge is seen also in
figures 15 and 16.

26-2
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In figure 15 the shape of the bridge profile is seen to vary with the value £” at constant ratio
Ry[Rx(270°) = —0.25. Curve A corresponds to some stage between the catenoid and the circle of
figure 14. As #” increases this has the effect of drawing the upper arm into a circle of diminishing
radius and of opening out the lower arm into one of increasing radius in the manner shown.
As f” increases towards a fixed value the profile (approximately curve C) corresponds to that of
a closed meniscus. At an even larger value of 8" (curve G) the shape of the profile becomes that
of a rod or a sphere at a free surface of liquid.

In figure 16 a further nest of curves has been drawn at a constant value of #” = 1.0 for varying
values of Ry/Ry. The curves to some extent duplicate the curve of figure 15 but with one important
difference: it is now seen that when Ry/Rn = — 0.1 the shape does not approximate to that of a
semicircle. This is because £” is sufficiently large to produce distinctive distortion of both arms
of the liquid bridge. When Ry/R;,(270°) approaches 0 the shape then corresponds to that of a
cylindrical meniscus formed between two solid surfaces but is not of the same shape as a cylindrical
meniscus formed at a free liquid surface. A cylindrical meniscus at a free surface involves " being
very large and Ry/Ry being very near to zero, values which are both reached when the experi-
mentally determined quantity Rn(270°) is very large.

This paper, together with the tables it summarizes, is complete in that it covers the shapes of all
axisymmetric menisci. The comparison of the profiles with experiment forms a separate study
and will be the subject of a further communication.

REFERENCES

Andreas, J. M., Hauser, E. A. & Tucker, W. B. 1938 J. phys. Chem. 42, 1001.

Bakker, G. 1928 Handbuch der Experimentalphysik, 6. Leipzig: Akademische Verlagsgesellschaft.

Bashforth, F. & Adams, J. C. 1883 An attempt to test the theories of capillary attraction. Cambridge University Press.

Blaisdell, B. E. 1940 J. Math. Phys. 19, 186, 217, 220.

Bouasse, H. 1924 Capillarité Phénoménes Superficiels. Paris: Libraire Delagrave.

Buff, F. P. 1960 Handb. Phys. 10, 281-304.

Clark, W. C., Haynes, J. M. & Mason, G. 1968 Chem. Engng Sci. 23, 810.

Cross, N. L. & Picknett, R. G. 1963 Trans. Faraday Soc. 59, 846.

Cross, N. L. & Picknett, R. G. 1968 J. Coll. Interface Sci. 26, 247.

Derjaguin, B. V. 1946 Dokl. Akad. Nauk. SSSR, 51, 519.

Derjaguin, B. V. 1968 J. Coll. Interface Sci. 26, 253.

Fisher, R. A. 1926 J. agric. Sci. 16, 492.

Fordham, S. 1948 Proc. Roy. Soc. Lond. A 194, 1.

Gillespie, T. & Rose, G. D. 1968 J. Coll. Interface Sci. 26, 246.

Huh, C. & Scriven, L. E. 1969 J. Coll. Interface Sci. 30, 323.

Kelvin, Lord (Sir W. Thomson) 1886 Popular lectures and addresses, I, pp. 1-72. London: The Royal Institution.

Ku, T. C,, Ramsey, J. H. & Clinton, W. C. 1968 I.B.M. Jnl Res. and Dev. Nov., p. 441.

Laplace, P. S. de 1805 Mechanique Celeste, suppl. au X libre. Paris: Coureier.

Mcfarlane, J. S. & Tabor, D. 1950 Proc. Roy. Soc. Lond., A 202, 224.

Mason, G. & Clark, W. C. 1965 Chem. Engng Sci. 20, 859.

Melrose, J. C. 1966 A.I.Ch.E. Jl, 12, 986-994.

Mills, O. S. 1953 Br. J. appl. Phys. 4, 247.

Niederhauser, D. O. & Bartell, F. E. 1950 Report of progress—fundamental research on occurrence and recovery of
petroleum, 1948-1949, p. 114. Amer. Pet. Inst., Baltimore.

Nutt, C. W. 1960 Chem. Engng Sci. 12, 133.

Padday, J. F. 1963 Nature, Lond. 198, 378.

Padday, J. F. 1969 Surface and colloid science, 1 (eds Matejevic and Eirich). New York: Wiley-Interscience.

Pietsch, W. & Rumpf, H. 1967 Z. Tech. Chemie, 15, 885.

Plateau, J. 1873 Statiq. expl. et theor. des liquides, Gand.

Princen, H. M. 1968 J. Coll. Interface Sci. 26, 249.

Princen, H. M. 1969 Surface and colloid science, 2 (eds. Matejevic and Eirich). New York: Wiley-Interscience.

Radushkevich, L. V. 1952 Izv. Akad. nauk SSSR Otdel Khim Nauk. 69, 1008.


http://rsta.royalsocietypublishing.org/

\

\

£

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

Vi

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PROFILES OF AXTALLY SYMMETRIC MENISCI 293

Smolders, C. A. 1961 Thesis Utrecht.

Staicopolus, D. N. 1962 J. Colloid Sci. 17, 439.

Staicopolus, D. N. 1963 J. Colloid Sci. 18, 793.

Staicopolus, D. N. 1967 J. Colloid Sci. 23, 453.

Stauffer, C. E. 1965 J. phys. Chem. 69, 1933.

Sugden, S. 1921 J. Am. chem. Soc. p. 1483.

Tawde, N. R. & Parvatikar, K. G. 1951 Indian J. Phys. 25, 473.
Tawde, N. R. & Parvatikar, K. G. 1954 Indian J. Phys. 28, 345.
Tawde, N. R. & Parvatikar, K. G. 1958 Indian J. Phys. 32, 174.
Verschaffelt, J. E. 1918 Verslagen Kon. Akad. v. Wetenschappen Amsterdam, 27, 205, 688.
White, D. A. & Tallmadge, J. A. 1965 J. Fluid Mech. 23, 325.


http://rsta.royalsocietypublishing.org/

